Bacteriophage-Derived Peptidase CHAPK Eliminates and Prevents Staphylococcal Biofilms
نویسندگان
چکیده
New antibacterial agents are urgently needed for the elimination of biofilm-forming bacteria that are highly resistant to traditional antimicrobial agents. Proliferation of such bacteria can lead to significant economic losses in the agri-food sector. This study demonstrates the potential of the bacteriophage-derived peptidase, CHAP(K), as a biocidal agent for the rapid disruption of biofilm-forming staphylococci, commonly associated with bovine mastitis. Purified CHAP(K) applied to biofilms of Staphylococcus aureus DPC5246 completely eliminated the staphylococcal biofilms within 4 h. In addition, CHAP(K) was able to prevent biofilm formation by this strain. The CHAP(K) lysin also reduced S. aureus in a skin decolonization model. Our data demonstrates the potential of CHAP(K) as a biocidal agent for prevention and treatment of biofilm-associated staphylococcal infections or as a decontaminating agent in the food and healthcare sectors.
منابع مشابه
In silico modeling of the staphylococcal bacteriophage-derived peptidase CHAPK
The aim of this study was to use comparative modeling to predict the three-dimensional structure of the CHAP(K) protein (cysteine, histidine-dependent amidohydrolase/peptidase domain of the LysK endolysin, derived from bacteriophage K). Iterative PSI-BLAST searches against the Protein Data Bank (PDB) and nonredundant (nr) databases were used to populate a multiple alignment for analysis using t...
متن کاملRole of the Pre-neck Appendage Protein (Dpo7) from Phage vB_SepiS-phiIPLA7 as an Anti-biofilm Agent in Staphylococcal Species
Staphylococcus epidermidis and Staphylococcus aureus are important causative agents of hospital-acquired infections and bacteremia, likely due to their ability to form biofilms. The production of a dense exopolysaccharide (EPS) matrix enclosing the cells slows the penetration of antibiotic down, resulting in therapy failure. The EPS depolymerase (Dpo7) derived from bacteriophage vB_SepiS-phiIPL...
متن کاملInvestigation of the effect of biosurfactant of Bacillus subtilis against Staphylococcus strains biofilms
Background: Biosurfactants are compounds that are produced by different microorganisms and have an emulsifying property. This study aimed to investigate extractive biosurfactant from bacillus subtilis (PTCC1720) against the biofilms of Staphylococcus aureus (PTCC 1112), Staphylococcus saprophyticus (PTCC 1440) and Staphylococcus epidermidis (PTCC 1435). Materials and Methods: This study was con...
متن کاملStaphylococcal bacteriophage-associated lysin: a lytic agent active against Staphylococcus aureus.
A lytic enzyme active against viable, intact staphylococci is released into culture fluids upon lysis of bacteriophage-infected Staphylococcus aureus PS53 cells. This enzyme, staphylococcal phage-associated lysin (PAL), was partially purified by ammonium sulfate precipitation and gel filtration through Sephadex G-200. PAL is optimally active at pH 6.5 and 30 C, and lytic activity is greatly enh...
متن کاملLytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus.
The recombinant phi11 endolysin hydrolyzed heat-killed staphylococci as well as staphylococcal biofilms. Cell wall targeting appeared to be a prerequisite for lysis of whole cells, and the combined action of the endopeptidase and amidase domains was necessary for maximum activity. In contrast, the phi12 endolysin was inactive and caused aggregation of the cells.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013